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ABSTRACT Theoretical and experimental studies of the elec-
tromagnetic response of semicontinuous metal films are pre-
sented. A scaling theory is developed by solving the surface
plasmon eigenproblem. The short-range correlations in the gov-
erning Kirchhoff Hamiltonian result in delocalization of the
surface plasmon eigenmodes. Although their relative weight in
the spectrum becomes asymptotically small for large systems,
the existence of these delocalized states modifies the critical
indices for the high-order field moments. This modification
is confirmed experimentally by the near-field measurement of
high-order intensity moments for percolating silver films on
glass substrates.

PACS 68.37.Uv; 73.20.Mf; 42.25.Dd; 78.67.-n

1 Introduction

Metal–dielectric nanocomposites have attracted
a large amount of interest in recent years due to their ex-
ceptional optical properties. Resonant excitation of surface
plasmons (SPs) enables concentration and transfer of elec-
tromagnetic energy over nanoscaled regions, making these
composite systems very different from their constituent ma-
terials [1–20]. Several studies have focused on the field
distribution on the surface of random 2-D metal–dielectric
systems such as semicontinuous metal films near the percola-
tion threshold [1–3, 6–9, 16–18, 20]. It has been theoretically
predicted [1–11] and experimentally confirmed [12–20] that
when light is made incident on these samples, electromag-
netic energy can be localized in subwavelength areas. These
‘hot spots’, which may be as small as a few nanometers, can
exhibit giant local field enhancement. As a result, the field
distribution on the surface of these structures is extremely
inhomogeneous [2–5, 8].

Theoretical modeling of SPs in planar random metallic
nanostructures initially involved the use of a Hamiltonian
similar to the Anderson Hamiltonian of an electronic sys-
tem [21]. The uncorrelated random potential in the Ander-
son model results in exponential localization of the electronic
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wave functions in 1-D and 2-D systems [21–23]. The spa-
tial localization of the electron wave function implies that
each electron is bound in a particular region of space, and
thus electron transport through the random system is impeded.
Due to similarity with the Anderson model, it was believed
that the SP modes of random metallic systems were local-
ized as well [1, 2, 8]. However, recent theoretical studies of
random planar metal–dielectric composites have shown that
the SP modes of such systems are not strongly (Anderson)
localized and there is a significant presence of delocalized
modes [3]. The coexistence of localized modes and delocal-
ized modes [3, 6] makes it difficult to experimentally probe
the delocalized states.

In this paper we demonstrate that short-range correlations
in the governing Kirchhoff Hamiltonian (KH) result in de-
localization of the SP eigenmodes in semicontinuous metal
films at the percolation threshold. The subset of these modes
has a zero measure, so that their relative weight in the spec-
trum becomes asymptotically small for large systems. This
study aims at finding the manifestation of these delocalized
modes from the optical response of the composite. We find
theoretically that the singularity caused by the delocalized
states results in modification of the critical indices for the
high-order field moments. This modification is probed exper-
imentally for percolating silver films by near-field scanning
optical microscopy. By comparing the measured local field
moments to the numerically calculated values, we extract the
degree of delocalization and prove the existence of delocal-
ized SP states.

2 Theory and numerical calculations

Random metal–dielectric composites comprise
nanosized metal particles on a dielectric substrate. In the vis-
ible and infrared spectral ranges, the metal conductivity σm
is a complex number with a positive imaginary part σ ′′

m and
a small real part σ ′

m (representing losses in metal). Therefore,
a metal particle can be viewed as an inductance L connected
in series with a resistance R, while the dielectric host is mod-
eled as a capacitance C. Relying on this model, one may think
of the inhomogeneous metal film as a random network of
RLC circuits [2, 24]. The geometrical disorder in such sys-
tems leads to a broad range of SP resonances (corresponding
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to equivalent RLC resonances) and strong enhancement of the
local electric fields [2, 16].

To investigate the SP modes that are excited on the film
surfaces, we restrict our study to composites of metal particles
with sizes much smaller than the wavelength of illumina-
tion, a � λ. Under this condition one can neglect retardation
effects and seek a solution for the local potential in the quasi-
static approximation. The resulting ‘generalized’ current con-
servation has the form

∇ · [σ(r)(−∇ϕ(r)+ E0)] = 0 , (1)

where σ(r) is the spatially dependent local conductivity, ϕ(r)
describes the local potential and E0 is the external field. In our
model we assign to σ(r) a metal conductivity σm with prob-
ability p or a dielectric conductivity σd with probability 1 −
p. Discretization of (1) on a square lattice with size L leads
to a system of L2 linear equations Ĥ ·Φ = F, where the ma-
trix Ĥ is the Kirchhoff Hamiltonian (KH), while the vectors
Φ and F are the local potentials and externally induced cur-
rents, respectively. The KH is a symmetric random matrix
with diagonal elements given by the sum Hii = ∑

j σij of all
bond conductivities σij that connect the ith site with its nearest
neighbors and off-diagonal elements Hij = −σij . Due to the
random nature of the conductivities σij the KH is thus math-
ematically similar to the Anderson Hamiltonian (AH) that is
studied in quantum mechanics [1, 22]. However, unlike the
AH, the diagonal and off-diagonal elements of the KH are not
independent. The correlations are due to the local current con-
servation, and as we will show later they result in dramatic
changes in the nature of the SP localization as compared to the
discrete non-correlated Anderson analogue.

In order to simplify the treatment of the SP excitation
in metal–dielectric films, we first work in the regime of
single-particle resonance, ε′

m = −εd, where the dielectric con-
stants εs = 4πiσs/ωr depend on the complex conductivities
σs (s stands for the metal or the dielectric components) and
the resonance frequency ωr. Next, we normalize (1) by σd and
use a new set of non-dimensional permittivities ε∗

d = 1 and
ε∗

m = −1 + iκ, where for noble metals and visible light the
losses are small: κ = ε′′

m/|ε′
m| � 1. Following the scaling the-

ory [1], we seek a general solution of (1) as an expansion over
the eigenstates Ψn of the SP eigenproblem

∇ · [θ(r)∇Ψn(r)] = ΛnΨn(r) , (2)

where the topology function θ(r) = ±1 maps the real part of
the non-dimensional dielectric constant ε∗(r) and thus cor-
responds only to geometrical characteristics of the film. Spe-
cifically, the reduction of (3) on a square lattice results in
a matrix equation Ĥ′ ·Ψn = ΛnΨn , where Ĥ′ is the real part
of the normalized KH and has the same correlation proper-
ties. These correlations can also be represented through the
covariance matrices Ĝd−d and Ĝd−o that describe the statisti-
cal dependences between the diagonal {di} and off-diagonal
{oi} elements of the matrix Ĥ′. Specifically, for the diagonal
elements we have Gd−d

ij = E[(di −d)(dj −d)] = σ2
o (δi, j±1 +

δi, j±L + 4δij), where E is the expectation value and σo is
the standard deviation of the off-diagonal elements. For the

correlations between diagonal and off-diagonal elements we
have Gd−o

ij = E[(di −d)(oj −o)] = σ2
o (δi, j−1 + δij), where we

have taken into consideration the first to the right off-diagonal
vector, but similar relationships hold for the rest of the off-
diagonal vectors. For all cases, at the percolation threshold
p = pc we have σo = 1 and d = o = 0.

We solve the SP eigenproblem by using Neumann-type
boundary conditions, thus assuring the conservation of the
local currents at the film boundaries. For example, we use
θ(r)[n ·∇Ψn(r)]|x=0 = θ(r)[n ·∇Ψn(r)]|x=L at the left and
right sample boundaries. Alternatively, electrode-type bound-
ary or ‘natural’ boundary conditions (H ′

ii = 1, at the bound-
ary) can be applied.

To begin our analysis of the SP eigenproblem we first ex-
amine some specific eigenmodes. For metal–dielectric films
at the percolation threshold, we distinguish two limiting
cases. In the first case presented in Fig. 1a, the SP eigenmode
situated at the band edge is strongly localized. However, the
nature of the eigenstates at the band center (see Fig. 1b) is

FIGURE 1 Surface plasmon eigenmodes in random (a), (b) and pe-
riodic (c) metal–dielectric films. The corresponding eigenvalues are
(a) Λ = −5.6945 (localized), (b) Λ = 0.0044 (delocalized) and (c) Λ =
−5.9974 (periodic)
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completely different. Those states are extended and accord-
ing to our studies (not presented here) they exhibit multifractal
properties. In Fig. 1c we also show a particular SP mode that
is manifested in the periodic case. The periodic structure is
modeled as a square lattice of metal particles with metal cov-
erage equal to 2/3. The important feature to be recognized
here is the presence of two length scales, one corresponding to
the macroscopically extended Bloch states and the second to
local oscillations on the scale of a single particle. We believe
that the microscopic SP eigenmode fluctuations correspond
to a strong inhomogeneity of the electromagnetic fields ob-
served even for a perfectly ordered metal–dielectric film [25].

The statistical properties of the SP eigenproblem are in-
vestigated in terms of the density of states �(Λ) and SP local-
ization lengths ξ(Λ). Both characteristics are studied for the
KH and for the corresponding discrete, non-correlated AH. To
simulate the AH we rely on the fact that for each metal con-
centration p the elements of the matrix Ĥ′ take discrete values
with a specific probability. Those probability distributions are
then used to build up the AH without enforcing correlations
between its elements.

In Fig. 2a we show that both correlated and non-correlated
eigenproblems have quite similar densities of states for most
of the spectrum. However, at the band center we observe
a singularity in the case of the KH. To better understand this
important peculiarity, we plot (see the inset in Fig. 2a) the re-
gion of very small eigenvalues (Λ � 1) on a log–log scale.

FIGURE 2 The density of states �(Λ) (a) and the SP localization lengths
ξ(Λ) (b) for the KH (dots) and for the corresponding Anderson problem
(solid line), calculated at the resonant condition ε∗

d = −ε∗
m = 1. The band-

center singularity is shown in the log–log insets, where a power-law fit
(dashed line) with exponent γ = α = 0.14 is applied. The data is averaged
over 100 different realizations of percolation samples each with size L = 120

In the first approximation the density of states seems to di-
verge as a power law �(Λ) � A|Λ|−γ , where A is a normal-
ization constant and γ = 0.14 ± 0.01 is a critical exponent.
However, a logarithmic singularity �(Λ) � A[1 + ln(|Λ|−γ )]
also fits the result. Those two functions are virtually identi-
cal in a broad range of the arguments e1/γ � |Λ| � e−1/γ ,
and therefore for simplicity in the scaling theory that follows
we use the power-law relationship. In Fig. 2a we have also in-
cluded the result for the non-correlated AH case, where the
density of states is relatively uniform throughout the spec-
tra and does not show any singularities, which matches our
expectations.

The role of the cross correlations presented in the KH
eigenproblem is next studied in terms of the SP localiza-
tion lengths ξ(Λ). The localization length for each eigen-
mode is calculated using the gyration radius ξ2(Λn) = ∫

(r−
〈r〉n)

2|Ψn(r)|2 dr, where 〈r〉n = ∫
r|Ψn(r)|2 dr is the ‘mass

center’ of the nth mode and the integration is performed over
the film surface. The results for ξ(Λ) are presented in Fig. 2b.
Similar to what we have observed for the density of states (see
Fig. 2a), there is a singularity at the band center for the KH.
The localization length diverges logarithmically for Λ → 0,
but also can be fitted with a power law ξ(Λ) ∼ |Λ|−α, where
α = 0.15 ±0.02. The size effect is clearly visible for the ex-
tended states with ξ(Λ) ≥ L.

The existence of delocalized states has been recently pre-
dicted for a somewhat similar (but not the same) SP eigen-
problem in [3], where it was concluded that those modes play
a dominant role in the interaction with light. Here, we show
that the role of the delocalized modes (ξ(Λ) ≥ L) is more sub-
tle. In the limit of large systems L → ∞ the measure of those
states in the spectrum rapidly falls as µ ∼ e−L/γ ln(L), where
we have assumed logarithmic singularities for both ξ(Λ) and
�(Λ), with α = γ . However, despite the zero measure of the
delocalized states, they still affect the optical properties of the
composite as shown below.

Relying on the scaling properties of the SP eigenproblem,
we develop a scaling theory for the ensemble-averaged high-
order moments

Mn,m =
〈

S−1
∫

|E(r)/E0|n[E(r)/E0]m dr
〉

(3)

of the local electric fields E(r) = −∇ϕ(r), where the in-
tegration is over the film surface S. We follow the ap-
proach developed in [25] and expand the local potential
ϕ(r) = ∫

a(Λ)Ψn(Λ, r)dr over the SP eigenstates. In zero ap-
proximation (in terms of κ), the weight coefficient a(0)(Λ) =
ΠE0(Λ)/(Λ + iκ) depends on the projection ΠE0(Λ) =∫

Ψ(Λ, r)[E0 ·∇ε(r)]dr of the external field E0 on the eigen-
states. Assuming exponential localization of the SP eigen-
modes with localization length ξ(Λ), it is possible to obtain
a simple scaling relationship for the high-order local field mo-
ments of the form

Mn,m �
∫

�(Λ)[a/ξ(Λ)]2(n+m−1)

[Λ2 +κ2](n+m)/2
eimφ(κ,Λ) dΛ � κ−�n,m ,

(4)

where �n,m = (n +m −1)(1−2γ)+γ is a positive scaling ex-
ponent (n ≥ 1), κ is the loss factor and φ(κ,Λ) = tan−1(κ/Λ)

in a phase factor.
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In the derivation of (4) we use α = γ , which agrees with
our numerical results. Note that the singularity’s critical in-
dex γ affects the high-order field moments through its contri-
bution to the index �n,m . The previously reported result [2],
which was obtained based on the assumption that all modes
are localized, can be retrieved from the formula above by set-
ting γ = 0. Thus, (4) corrects the former theory [2] by taking
into account the delocalized states.

It is possible to recover (4) by considering the local field
as a set of peaks with characteristic size l∗p � ξ(κ), magni-
tude E∗

m ∼ E0κ
−1+2γ and separation distance between them

proportional to ξ∗
e ∼ l∗pκ(−1+3γ)/2. Based on this similarity, the

theory can be extended to frequencies that are away from the
single-particle resonance (ε′

m = −εd). This is accomplished
through renormalization of the system by dividing into seg-
ments with size lr = a(|ε′

m|/εd)
ν/(t+s), where t, s and ν are

the critical exponents for the static conductivity, dielectric
constant and percolation correlation length, respectively. At
the new length scale, the effective dielectric constants of the
segments εm(lr) and εd(lr) possess the same resonance proper-
ties εm(lr)/εd(lr) � −1 + iκ as the original SP eigenproblem.
Taking into consideration that the electric field is renormal-
ized as Em ∼ (lr/a)E∗

m and the new field separation length is
ξe ∼ (lr/a)ξ∗

e , the field moments are estimated as

Mn,m �
( |ε′

m|
ε′′

m

)�n,m
( |ε′

m|
εd

) ν(n+m−2)+s
s+t

, (5)

where we have used the scaling relationship n(lr) ∝ (lr/a)s/ν

for the number of peaks in each segment. Note that, at the
single-particle resonance ε′

m = −εd, (5) is reduced to the pre-
vious result (4).

To examine the frequency dependence of the moments
Mn,m , we consider noble metals and use the Drude model
for the dielectric constant εm(ω) � εb − (ωp/ω)2/(1+ iωτ/ω),
where εb is the interband transition term, ωp is the plasma
frequency and ωτ � ωp is the relaxation rate [26]. Applying
the exact block elimination method [6], we check (5) for Ag
composites in the high-frequency range ωp > ω > ωτ . The
results are shown in Fig. 3. Clearly, there is an excellent cor-

FIGURE 3 The local field moments Mn,0 (dots) are calculated with the
exact numerical method and compared to the analytical results with exponent
γ = 0.14 (dashed lines). The numerical data is averaged over 20 realizations
of percolation systems with size L = 250. In the analytical estimates we use
t � s � ν � 4/3 [1]

relation between the numerical simulations and theoretical
results. In both cases the field moments gradually decrease
with the increase of the frequency and converge toward unity
for ω = ωp/

√
εb.

The local field enhancement, manifested through the high-
order field moments, is directly measured in various linear and
nonlinear optical processes. For example, surface-enhanced
Raman scattering has been shown to be proportional to M4,0,
while the enhancement of Kerr optical nonlinearity is given
by M2,2 [1, 2, 27]. Thus, experimental investigation of these
processes and their spectral dependences can result in further
insight into the localization properties of the SP eigenmodes.

3 Experiment

To experimentally test the existence of delocalized
states, we probed the delocalization exponent for the high-
order moments of local intensity. Using a near-field scanning
optical microscope (NSOM), we measured the near-field in-
tensity distribution across semicontinuous silver films at the
percolation threshold, and obtained the high-order moments
of near-field intensities.

The semicontinuous silver films on glass substrates were
synthesized by pulsed laser deposition [18]. Transmission
electron microscope (TEM) images show that the samples
are composed of individual silver grains with an average size
of 10–15 nm. An increase in deposition time (surface con-
centration of silver) induces a structural transition from iso-
lated metal grains (p ≤ 0.4) to interconnected metal clusters
(p ≈ 0.6) and finally to a nearly continuous metal film with
dielectric voids (p ≥ 0.8). For these samples, the percolation
threshold was found to be at pc ≈ 0.65 [18]. In the near-field
experiment, the samples were illuminated by the evanescent
field (in total internal reflection geometry) of He-Ne lasers op-
erating at 543 nm and 633 nm (p-polarized). The local optical
signal was collected by a tapered, uncoated optical fiber with
a tip radius ∼ 50 nm. The tip-to-sample distance, controlled
by shear-force feedback, was about 10 nm. The tip resolution
was estimated at ∼ 150 nm from the smallest features present
in the near-field images [18]. The near-field intensity distri-
bution was measured over several samples at the percolation
threshold.

In Fig. 4 we present NSOM images showing the intensity
distribution over a 8×8 µm area of a percolating silver film at
two wavelengths 543 nm (Fig. 4a) and 633 nm (Fig. 4d). The
intensity distribution across the sample is inhomogeneous,
with hot spots of various sizes and amplitudes. The loca-
tions of the field maxima are very sensitive to wavelength,
and the NSOM image changes completely upon a change
of probe wavelength. Numerical calculations were also per-
formed at λ = 543 nm (Fig. 4c) and 633 nm (Fig. 4f). A com-
parison of the NSOM images to the numerically calculated
intensity distributions reveals that the minimum feature size
in the measured intensity distribution corresponds to the reso-
lution limit of the NSOM tip (∼ 150 nm), whereas the small-
est feature size in the numerical data is of the order of the
grain size (∼ 10 nm). Consequently, the local field enhance-
ment factors are significantly lower in the experimental data.
The numerical data were averaged over an area correspond-
ing to the resolution limit of the NSOM. The resulting images,
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FIGURE 4 Local intensity distribution over a 8 × 8 µm area of a semi-
continuous silver–glass film at the percolation threshold at illumination
wavelengths 543 nm (a, b, c) and 633 nm (d, e, f). (a) and (d) are obtained
from NSOM measurements. (c) and (f) are numerically calculated intensity
distributions. (b) and (e) are numerically calculations with spatial averaging
to account for the NSOM tip resolution. The scale bar gives the intensity
enhancement factor

shown in Fig. 4b and e, are similar to the experimental im-
ages in terms of both feature size and local field enhancement
factors.

From the NSOM images, we calculated the local inten-
sity moments M2n = 〈I(x, y)n〉/In

0 , where I(x, y) is the near-
field intensity and I0 is the constant intensity of the inci-
dent light. Figure 5a is a log–linear plot of M2n versus n for
both wavelengths. log(M2n) increases almost linearly with
n, as theoretically predicted in (4). However, the slopes of
the experimental curves are considerably lower than the the-
oretical values. This reduction, as well as the reduction in
the values of M2n , is caused by the spatial averaging of the
NSOM tip. To account for this effect, the numerical data
are averaged over a square of dimension d situated 10 nm
above the substrate. Figure 5b shows that the slopes decrease
as the averaging size d increases. When the slopes are re-
duced to the experimental values (marked by the horizontal
lines), the averaging size is consistent with our NSOM reso-
lution. Additional confirmation for this averaging size comes
from the agreement between the calculated intensity variance
at this averaging size and the experimental values of vari-
ance. These agreements provide experimental validation of
the numerical calculation, which gives the critical exponent
without tip averaging γ ≈ 0.1 at both wavelengths 543 nm
and 633 nm. This value is close to the value of 0.14 obtained

FIGURE 5 (a) Log–linear plot of the measured near-field intensity mo-
ments M2n versus the order n at λ = 543 nm (squares) and 633 nm (circles).
(b) The slope of log(M2n) over n obtained from the averaged numerical data
as a function of the averaging size d. The experimental values of the slopes
are marked by the horizontal lines

in Sect. 2, and confirms a tangible presence of delocalized
SP modes.

4 Conclusion

In summary, we have investigated surface plas-
mon (SP) excitation in random metal–dielectric films. The
Kirchhoff Hamiltonian (KH) describing the system exhibits
unique short-range correlations between the diagonal and
off-diagonal elements. These correlations, occurring be-
cause of local current conservation, result in a localization–
delocalization transition for the electromagnetic response of
the composite. This transition is manifested as a singularity in
the center of the spectrum and corresponds to a zero-measure
subset of delocalized SP eigenstates. This type of delocaliza-
tion is inherent only in the correlated KH and is not present
in the non-correlated discrete Anderson analogue. The scal-
ing theory that is developed accounts for both localized and
delocalized SP eigenmodes and describes the high-order field
moments responsible for the nonlinear optical response of the
system. Despite the zero measure of SP delocalization, it is
found that it still affects the optical properties of the composite
by modifying the critical indices in the field moments. Such
a modification is confirmed experimentally by the near-field
measurement of high-order intensity moments for percolating
silver films on glass substrates. A good agreement between
the experimental data and the numerical simulation results re-
veals the existence of delocalized SP states in semicontinuous
silver films at the percolation threshold.
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